Skip to content
1981
Volume 19, Issue 1
  • ISSN: 1474-2748
  • E-ISSN: 2040-0551

Abstract

This article presents a global overview of emerging trends of wind energy technology development. The research conducted: a bibliographic review of the methods of technological prospecting and wind energy; a patent analysis, presenting the current panorama of technologies in this sector; and mapping of the technological evolution of wind turbines and a proposal of the future trends. The patent analysis identified 25,644 patent registrations from 2003 to 2012, showing a growth trend primarily in the United States and China, with significant representation of companies such as General Electric and Mitsubishi. As defined by the World Intellectual Property Organization (WIPO), knowledge areas focused on patent application deposits cover mechanical engineering; lighting; heating; weapons; blasting; and electricity. The trends show that wind turbines of the future are likely to be vertical and synchronous with the height of the turbine greater than 194m and rotor diameter greater than 164m, and that the power of a wind turbine will exceed 10 MW. The materials used in the blades will be nanomaterials with the characteristics of low density and high resistance such as graphene. Wind turbine towers will feature a hybrid material, combining steel and concrete.

Loading

Article metrics loading...

/content/journals/10.1386/tmsd_00015_1
2020-03-01
2024-06-25
Loading full text...

Full text loading...

References

  1. Alberth, S.. ( 2008;), ‘ Forecasting technology costs via the experience curve: Myth or magic?. ’, Technological Forecasting and Social Change, 75:7, pp. 95283.
    [Google Scholar]
  2. Alencar, M. S. de M.. ( 2008;), ‘ Estudo de futuro através da aplicação de técnicas de prospecção tecnológica: O caso da nanotecnologia. ’, Ph.D. thesis, Rio de Janeiro:: Universidade Federal do Rio de Janeiro;.
    [Google Scholar]
  3. Amadei, J. R. P., and Torkomian, A. L. V.. ( 2009;), ‘ As patentes nas universidades: Análises dos depósitos das universidades paulistas. ’, Ciência da Informação, 38:2, pp. 918.
    [Google Scholar]
  4. Archibugi, D.,, Denni, M., and Filippetti, A.. ( 2009;), ‘ The technological capabilities of nations: The state of the art of synthetic indicators. ’, Technological Forecasting and Social Change, 76:7, pp. 91731.
    [Google Scholar]
  5. Behkami, N. A., and Daim, T. U.. ( 2012;), ‘ Research forecasting for Health Information Technology (HIT), using technology intelligence. ’, Technological Forecasting and Social Change, 79:3, pp. 498508.
    [Google Scholar]
  6. Bronstein, M. G.. ( 2011;), ‘ Harnessing rivers of wind: A technology and policy assessment of high altitude wind power in the US. ’, Technological Forecasting and Social Change, 78:4, pp. 73646.
    [Google Scholar]
  7. Canongia, C.,, Santos, D. M.,, Santos, M. M., and Zackiewicz, M.. ( 2004;), ‘ Foresight, inteligência competitiva e gestão do conhecimento: Instrumentos para a gestão da inovação. ’, Gestão & Produção, 11:2, pp. 23138.
    [Google Scholar]
  8. Castro, R. M. G.. ( 2008;), ‘ Energias renováveis e produção descentralizada: Introdução à energia eólica. ’, Ph.D. thesis, Lisbon: Universidade técnica de Lisboa.
    [Google Scholar]
  9. Chabot, B.,, Kellet, P., and Saulnier, B.. ( 2002;), ‘ Defining advanced wind energy tariffs systems to specific locations and applications: Lessons from the French tariff system and examples. ’, Global Wind Power Conference, Session C3: Regulatory, April, Paris, pp. 25.
    [Google Scholar]
  10. Choi, J., and Hwang, Y. S.. ( 2014;), ‘ Patent keyword network analysis for improving technology development efficiency. ’, Technological Forecasting and Social Change, 83:1, pp. 17082.
    [Google Scholar]
  11. Christodoulos, C.,, Michalakelis, C., and Varoutas, D.. ( 2010;), ‘ Forecasting with limited data: Combining ARIMA and diffusion models. ’, Technological Forecasting and Social Change, 77:4, pp. 55865.
    [Google Scholar]
  12. Cresesb ( 2008), Energia Eólica: Princípios e Tecnologia, Rio de Janeiro:: Centro de Referência para Energia Solar e Eólica Sérgio de Salvo Britto;.
    [Google Scholar]
  13. Daim, T. U.,, Amer, M., and Brenden, R.. ( 2012;), ‘ Technology roadmapping for wind energy: Case of the Pacific Northwest. ’, Journal of Cleaner Production, 20:1, pp. 2737.
    [Google Scholar]
  14. Del Río, P., and Tarancón, M. Ángel. ( 2012;), ‘ Analysing the determinants of on-shore wind capacity additions in the EU: An econometric study. ’, Applied Energy, 95: July, pp. 1221.
    [Google Scholar]
  15. Dismukes, J. P.,, Miller, L. K.,, Solocha, A.,, Jagani, S., and Bers, J. A.. ( 2007;), ‘ Wind energy electrical power generation: Industrial life cycle of a radical innovation. ’, PICMET ’07: 2007 Portland International Conference on Management of Engineering & Technology, Portland, OR:: IEEE;, pp. 77385.
    [Google Scholar]
  16. Dubarić, E.,, Giannoccaro, D.,, Bengtsson, R., and Ackermann, T.. ( 2011;), ‘ Patent data as indicators of wind power technology development. ’, World Patent Information, 33:2, pp. 14449.
    [Google Scholar]
  17. Dutra, R. M.. ( 2007;), ‘ Propostas de Políticas Específicas para Energia Eólica no Brasil após a Primeira Fase do PROINFA. ’, Rio de Janeiro:: Universidade Federal do Rio de Janeiro;.
    [Google Scholar]
  18. Eriksson, S.,, Bernhoff, H., and Leijon, M.. ( 2008;), ‘ Evaluation of different turbine concepts for wind power. ’, Renewable and Sustainable Energy Reviews, 12:5, pp. 141934.
    [Google Scholar]
  19. EWEA ( 2012), Wind in Power: 2012, Annual European Statistics , Brussels:: EWEA;.
    [Google Scholar]
  20. Falani, S. Y. A.,, Almeida, M. R.,, González, M. O. A.,, Campos, M. C.,, Rocha, F. B. A., and Silveira, M. L. S. S.. ( 2014;), ‘ Mapeamento do fluxo de valor para melhoria de processo de uma indústria têxtil. ’, Espacios (Caracas), 35, p. 13.
    [Google Scholar]
  21. Fye, S. R.,, Charbonneau, S. M.,, Hay, J. W., and Mullins, C. A.. ( 2013;), ‘ An examination of factors affecting accuracy in technology forecasts. ’, Technological Forecasting and Social Change, 80:6, pp. 122231.
    [Google Scholar]
  22. Gao, L.,, Porter, A. L.,, Wang, J.,, Fang, S.,, Zhang, X.,, Ma, T.,, Wang, W., and Huang, L.. ( 2013;), ‘ Technology life cycle analysis method based on patent documents. ’, Technological Forecasting and Social Change, 80:3, pp. 398407.
    [Google Scholar]
  23. Garcia, S. B.,, Simioni, G. C. D. S., and Alé, J. A. V.. ( 2006;), ‘ Aspectos de Desenvolvimento de Turbina Eólica de Eixo Vertical. ’, IV Congresso Nacional de Bioética, Porto Alegre:: PUCRS;.
    [Google Scholar]
  24. González, M. O. A.,, Galvão, M. S.,, Falani, S. Y. A.,, Gonçalves, J. dos S., and Silva, L. T. S.. ( 2013;), ‘ Open innovation practices in the development of wind energy supply chain: an exploratory analysis of the literature. ’, Product: Management & Development, 10:2, pp. 10411.
    [Google Scholar]
  25. González, M. O. A., and Toledo, J. C. A.. ( 2012;), ‘ Integração do cliente no processo de desenvolvimento de produto: Revisão bibliográfica sistemática e temas para pesquisa. ’, Produção, 22:1, pp. 1426. https://doi.org/10.1590/S0103-65132011005000065. Accessed 1 May 2020.
    [Google Scholar]
  26. GWEC ( 2013), Annual Market Update 2012, Brussels:: GWEC;.
    [Google Scholar]
  27. GWEC ( 2014), Annual Market Update 2013, Brussels:: GWEC;.
    [Google Scholar]
  28. GWEC ( 2018), Global Wind Report 2017, Brussels:: GWEC;, http://www.gwec.net/publications/global-wind-report. Accessed 2 March 2020.
    [Google Scholar]
  29. Hassan, G.. ( 2010;), ‘ Wake effects within and between large wind projects: The challenge of scale, density and neighbours-onshore and offshore. ’, proceedings of EWEC 2010, 44, Warsaw:: The European Wind Energy Association;, pp. 110.
    [Google Scholar]
  30. Huang, L.,, Zhang, Y.,, Guo, Y.,, Zhu, D., and Porter, A. L.. ( 2012;), ‘ Four dimensional science and technology planning: A new approach based on bibliometrics and technology roadmapping. ’, Technological Forecasting and Social Change, 81: January, pp. 3948.
    [Google Scholar]
  31. IEA ( 2013;), ‘ Renewable energy outlook. ’, World Energy Outlook 2013, Paris:: International Energy Agency;, pp. 197232.
    [Google Scholar]
  32. Järvenpää, H. M.,, Mäkinen, S. J., and Seppänen, M.. ( 2011;), ‘ Patent and publishing activity sequence over a technology’s life cycle. ’, Technological Forecasting and Social Change, 78:2, pp. 28393.
    [Google Scholar]
  33. Jeffrey, H.,, Jay, B., and Winskel, M.. ( 2013;), ‘ Accelerating the development of marine energy: Exploring the prospects, benefits and challenges. ’, Technological Forecasting and Social Change, 80:7, pp. 130616.
    [Google Scholar]
  34. Kaldellis, J. K., and Zafirakis, D.. ( 2011;), ‘ The wind energy (r)evolution: A short review of a long history. ’, Renewable Energy, 36:7, pp. 1887901.
    [Google Scholar]
  35. Karvonen, M., and Kässi, T.. ( 2013;), ‘ Patent citations as a tool for analysing the early stages of convergence. ’, Technological Forecasting and Social Change, 80:6, pp. 109407.
    [Google Scholar]
  36. Kaur, M., and Singh, L.. ( 2016;), ‘ R&D expenditure and economic growth: An empirical analysis. ’, International Journal of Technology Management & Sustainable Development, 15:3, pp. 195213.
    [Google Scholar]
  37. Kivi, A.,, Smura, T., and Töyli, J.. ( 2012;), ‘ Technology product evolution and the diffusion of new product features. ’, Technological Forecasting and Social Change, 79:1, pp. 10726.
    [Google Scholar]
  38. Kwakkel, J. H.,, Carley, S.,, Chase, J., and Cunningham, S. W.. ( 2014;), ‘ Visualizing geo-spatial data in science, technology and innovation. ’, Technological Forecasting and Social Change, 81:1, pp. 6781.
    [Google Scholar]
  39. Kwon, D. K., and Kareem, A.. ( 2013;), ‘ Comparative study of major international wind codes and standards for wind effects on tall buildings. ’, Engineering Structures, 51: June, pp. 2335.
    [Google Scholar]
  40. Lee, M.,, Kim, K., and Cho, Y.. ( 2010;), ‘ A study on the relationship between technology diffusion and new product diffusion. ’, Technological Forecasting and Social Change, 77:5, pp. 796802.
    [Google Scholar]
  41. MDIC ( 2001), Programa Brasileiro de Prospectiva Tecnológica Industrial, Secretaría de Tecnología Industrial, Ministério do Desenvolvimento, Indústria e Comércio Exterior;, Brasília, Brazil:.
    [Google Scholar]
  42. Mendonça, M.. ( 2009), Feed-in Tariffs: Accelerating the Deployment of Renewable Energy, London:: Earthscan;.
    [Google Scholar]
  43. Mitsubishi ( 2012;), ‘ Wind turbine products. ’, Mitsubishi Heavy Industries, 15 January, https://www.mhi.com/products/energy/wind_turbine_plant.html. Accessed 2 March 2020.
    [Google Scholar]
  44. Möllerström, E.,, Gipe, P.,, Beurskens, J., and Ottermo, F.. ( 2019;), ‘ A historical review of vertical axis wind turbines rated 100 kW and above. ’, Renewable and Sustainable Energy Reviews, 105: May, pp. 113.
    [Google Scholar]
  45. National Renewable Energy Laboratory (NREL) ( 2012;), ‘ Biopower technologies. ’, Renewable Electricity Futures Study: Renewable Electricity Generation and Storage Technologies, 2:2, pp. 18588.
    [Google Scholar]
  46. National Renewable Energy Laboratory (NREL) ( 2013;), ‘ Offshore wind technology overview. (No. NREL/CP-500-42252), National Renewable Energy Lab (NREL), Golden, CO.
  47. Navigant ( 2013), World Market Update 2012, Chicago:: Navigant;.
    [Google Scholar]
  48. OECD ( 2005), Manual de Oslo: Diretrizes para coleta e interpretação de dados sobre inovação, Brasília:: OECD and Finep;.
    [Google Scholar]
  49. Porter, A.. ( 2004;), ‘ Technology futures analysis: Toward integration of the field and new methods. ’, Technological Forecasting and Social Change, 71:3, pp. 287303.
    [Google Scholar]
  50. Porter, M. E.. ( 1991), Estratégia Competitiva: Técnicas para análise de indústrias e da concorrência, , 18th ed.., São Paulo:: Campus;.
    [Google Scholar]
  51. Porter, M. E.. ( 1998), Competição: Estratégias competitivas essenciais, Rio de Janeiro:: Gulf Professional Publishing;.
    [Google Scholar]
  52. Remage, J.. ( 2003), Guia da energia: Um guia prático para os aspectos mais importantes da energia, Lisbon:: Monitor;.
    [Google Scholar]
  53. REN21 ( 2017), Renewables 2017 Global Status Report, Paris: REN21.
    [Google Scholar]
  54. Sampaio, P. G.,, González, M. O. A.,, Vasconcelos, R. M.,, Santos, M. A. T.,, Vidal, P.,, Pereira, J. P. P., and Everton, S.. ( 2020;), ‘ Prospecting technologies for photovoltaic solar energy: Overview of its technical-commercial viability. ’, International Journal of Energy Research, 93:2, pp. 65168.
    [Google Scholar]
  55. Santos, M. A. T., and González, M. O.. ( 2019;), ‘ Factors that influence the performance of wind farms. ’, Renewable Energy, 135: May, pp. 64351.
    [Google Scholar]
  56. Shibata, N.,, Kajikawa, Y., and Sakata, I.. ( 2010;), ‘ Extracting the commercialization gap between science and technology: Case study of a solar cell. ’, Technological Forecasting and Social Change, 77:7, pp. 114755.
    [Google Scholar]
  57. Siemens ( 2012;), ‘ Products and services. ’, Siemens Games, 15 December, https://www.siemensgamesa.com/products-and-service. Accessed 2 March 2020.
    [Google Scholar]
  58. Silva, R. A. de J.. ( 2009;), ‘ Microgeração na rede de BT: Limites Técnicos. ’, Ph.D. thesis, Universidade do Porto, Porto, Portugal.
    [Google Scholar]
  59. Thresher, R., and Laxson, A.. ( 2006;), ‘ Advanced wind technology: New challenges for a new century. ’, No. NREL/CP-500-39537, National Renewable Energy Lab (NREL), Golden, CO.
  60. Tseng, F.-M.,, Cheng, A.-C., and Peng, Y.-N.. ( 2009;), ‘ Assessing market penetration combining scenario analysis, Delphi, and the technological substitution model: The case of the OLED TV market. ’, Technological Forecasting and Social Change, 76:7, pp. 897909.
    [Google Scholar]
  61. Vestas ( 2012;), ‘ Products. ’, Vestas Wind Systems A/S, https://www.vestas.com/en/products. Accessed 2 March 2020.
    [Google Scholar]
  62. Winskel, M.,, Markusson, N.,, Jeffrey, H.,, Candelise, C.,, Dutton, G.,, Howarth, P.,, Jablonski, S.,, Kalyvas, C., and Ward, D.. ( 2014;), ‘ Learning pathways for energy supply technologies: Bridging between innovation studies and learning rates. ’, Technological Forecasting and Social Change, 81:1, pp. 96114.
    [Google Scholar]
  63. WIPO ( 2013), Annual Technical Report 2012, patent information activities, https://www.wipo.int/publications/en/details.jsp?id=273. Accessed 2 March 2020.
    [Google Scholar]
  64. WIPO ( 2018;), ‘ Classification IPC. ’, http://www.wipo.int/classifications/ipc/en/ITsupport. Accessed 2 March 2020.
  65. Wright, J., and Giovinazzo, R.. ( 2000;), ‘ Delphi: Uma ferramenta de apoio ao planejamento prospectivo. ’, Caderno de Pesquisas em Administraçao, 1:12, pp. 5465.
    [Google Scholar]
  66. Wu, F. S.,, Hsu, C. C.,, Lee, P. C., and Su, H. N.. ( 2011;), ‘ A systematic approach for integrated trend analysis: The case of etching. ’, Technological Forecasting and Social Change, 78:3, pp. 386407.
    [Google Scholar]
  67. Zarbin, A. J. G., and Oliveira, M. M.. ( 2013;), ‘ Nanoestruturas de carbono (nanotubos, grafeno): Quo Vadis?. ’, Química Nova, 36:10, pp. 153339.
    [Google Scholar]
  68. Zimmermann, M.,, Darkow, I. L., and Gracht, H. A. von der. ( 2012;), ‘ Integrating Delphi and participatory backcasting in pursuit of trustworthiness: The case of electric mobility in Germany. ’, Technological Forecasting and Social Change, 79:9, pp. 160521.
    [Google Scholar]
  69. de Falani, Samira Yusef Araújo,, de Toledo, José Carlos,, Torkomian, Ana Lúcia Vitale,, González, Mario Orestes Aguirre, and Barreto, Fernanda M.. ( 2020;), ‘ Trends in the technological development of wind energy generation. ’, International Journal of Technology Management & Sustainable Development, 19:1, pp. 4368, doi: https://doi.org/10.1386/tmsd_00015_1
    [Google Scholar]
/content/journals/10.1386/tmsd_00015_1
Loading
/content/journals/10.1386/tmsd_00015_1
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a success
Invalid data
An error occurred
Approval was partially successful, following selected items could not be processed due to error