Skip to content
1981
Reconciling Sustainable Practices, Competitiveness and Economic Development
  • ISSN: 1474-2748
  • E-ISSN: 2040-0551

Abstract

The agricultural sector contributes significantly to the world’s increasing carbon emissions, and governments have framed policies and regulations to lessen the effect of climate change and encourage sustainable growth. To diminish carbon emissions, utilizing renewable energy sources, particularly solar energy, in agriculture is a key measure that supports the triple helix model of sustainability, which focuses on environmental, social and governance (ESG). This study intended to deliver a complete overview of the prevailing literature to emphasize the significance of integrating solar energy with agriculture for sustainable growth. We conducted a systematic literature review of 173 articles from 1986 to 2024 and identified four major themes: energy–agriculture nexus, benefits and challenges; SPV and sustainability; different applications of solar power in agriculture and factors influencing it; and transition towards agrivoltaics. This study also enhanced existing literature reviews by showing direction in several key areas such as utilizing solar energy to address social issues, evaluating the economic aspects of integrating solar power into agriculture, facing real-world challenges encountered by farmers and employing diverse research methodologies to gain a comprehensive understanding of this interdisciplinary field.

Loading

Article metrics loading...

/content/journals/10.1386/tmsd_00101_1
2025-03-31
2025-05-13
Loading full text...

Full text loading...

References

  1. Ahlborg, H. and Hammar, L. (2014), ‘Drivers and barriers to rural electrification in Tanzania and Mozambique: Grid-extension, off-grid, and renewable energy technologies’, Renewable Energy, 61, January, pp. 11724, https://doi.org/10.1016/j.renene.2012.09.057.
    [Google Scholar]
  2. Akrami, M., Salah, A. H., Dibaj, M., Porcheron, M., Javadi, A. A., Farmani, R., Fath, H. E. and Negm, A. (2020), ‘A zero-liquid discharge model for a transient solar-powered desalination system for greenhouse’, Water, 12:5, 1440, https://doi.org/10.3390/w12051440.
    [Google Scholar]
  3. Akrofi, M. M. and Okitasari, M. (2022), ‘Integrating solar energy considerations into urban planning for low carbon cities: A systematic review of the state-of-the-art’, Urban Governance, 2:1, pp. 15772, https://doi.org/10.1016/j.ugj.2022.04.002.
    [Google Scholar]
  4. Al Dashti, H. (2012), The Effect of the Chemical Composition of the Atmosphere on the Climate of State of Kuwait, Giza: Cairo University.
    [Google Scholar]
  5. Al-Douri, Y., Waheeb, S. A. and Voon, C. H. (2019), ‘Review of the renewable energy outlook in Saudi Arabia’, Journal of Renewable and Sustainable Energy, 11:1, 015906, https://doi.org/10.1063/1.5058184.
    [Google Scholar]
  6. Aliyu, M., Hassan, G., Said, S. A., Siddiqui, M. U., Alawami, A. T. and Elamin, I. M. (2018), ‘A review of solar-powered water pumping systems’, Renewable and Sustainable Energy Reviews, 87, May, pp. 6176, https://doi.org/10.1016/j.rser.2018.02.010.
    [Google Scholar]
  7. Altay Topcu, B. and Doğan, M. (2022), ‘The effect of solar energy production on financial development and economic growth: Evidence from 11 selected countries’, Energy Sources, Part B: Economics, Planning, and Policy, 17:1, 2141377, https://doi.org/10.1080/15567249.2022.2141377.
    [Google Scholar]
  8. Andrew, A. C., Higgins, C. W., Smallman, M. A., Graham, M. and Ates, S. (2021), ‘Herbage yield, lamb growth and foraging behavior in agrivoltaic production system’, Frontiers in Sustainable Food Systems, 5, 659175, https://doi.org/10.3389/fsufs.2021.659175.
    [Google Scholar]
  9. Benedek, A., Rokicki, T. and Szeberényi, A. (2023), ‘Bibliometric evaluation of energy efficiency in agriculture’, Energies, 16:16, 5942, https://doi.org/10.3390/en16165942.
    [Google Scholar]
  10. Bolyssov, T., Yessengeldin, B., Akybayeva, G., Sultanova, Z. and Zhanseitov, A. (2019), ‘Features of the use of renewable energy sources in agriculture’, International Journal of Energy Economics and Policy, 9:4, pp. 36368, https://doi.org/10.32479/ijeep.7443.
    [Google Scholar]
  11. Broadus, R. N. (1987), ‘Toward a definition of “bibliometrics”’, Scientometrics, 12:5–6, pp. 37379, https://doi.org/10.1007/bf02016680.
    [Google Scholar]
  12. Bulut, U. and Apergis, N. (2021), ‘A new methodological perspective on the impact of energy consumption on economic growth: Time series evidence based on the Fourier approximation for solar energy in the USA’, GeoJournal, 86:4, pp. 196980, https://doi.org/10.1007/s10708-020-10171-x.
    [Google Scholar]
  13. Bulut, U. and Menegaki, A. (2020), ‘Solar energy–economic growth nexus in top 10 countries with the highest installed capacity’, Energy Sources, Part B: Economics, Planning, and Policy, 15:5, pp. 297310, https://doi.org/10.1080/15567249.2020.1788192.
    [Google Scholar]
  14. Burney, J., Woltering, L., Burke, M., Naylor, R. and Pasternak, D. (2010), ‘Solar-powered drip irrigation enhances food security in the Sudano–Sahel’, Proceedings of the National Academy of Sciences, 107:5, pp. 184853, https://doi.org/10.1073/pnas.0909678107.
    [Google Scholar]
  15. Cai, Y., Xu, J., Ahmad, P. and Anwar, A. (2022), ‘What drives carbon emissions in the long-run? The role of renewable energy and agriculture in achieving the sustainable development goals’, Economic Research-Ekonomska Istraživanja, 35:1, pp. 460324, https://doi.org/10.1080/1331677x.2021.2015613.
    [Google Scholar]
  16. Chaibi, M. T. (2000), ‘An overview of solar desalination for domestic and agriculture water needs in remote arid areas’, Desalination, 127:2, pp. 11933, https://doi.org/10.1016/s0011-9164(99)00197-6.
    [Google Scholar]
  17. Chalgynbayeva, A., Gabnai, Z., Lengyel, P., Pestisha, A. and Bai, A. (2023), ‘Worldwide research trends in agrivoltaic systems: A bibliometric review’, Energies, 16:2, https://doi.org/10.3390/en16020611.
    [Google Scholar]
  18. Choi, C. S., Ravi, S., Siregar, I. Z., Dwiyanti, F. G., Macknick, J., Elchinger, M. and Davatzes, N. C. (2021), ‘Combined land use of solar infrastructure and agriculture for socioeconomic and environmental co-benefits in the tropics’, Renewable and Sustainable Energy Reviews, 151, November, 111610, https://doi.org/10.1016/j.rser.2021.111610.
    [Google Scholar]
  19. Chowdhury, M. S., Rahman, K. S., Chowdhury, T., Nuthammachot, N., Techato, K., Akhtaruzzaman, M., Tiong, S. K., Sopian, K. and Amin, N. (2020), ‘An overview of solar photovoltaic panels’ end-of-life material recycling’, Energy Strategy Reviews, 27, January, 100431, https://doi.org/10.1016/j.esr.2019.100431.
    [Google Scholar]
  20. Comer, B. M., Fuentes, P., Dimkpa, C. O., Liu, Y. H., Fernandez, C. A., Arora, P., Realff, M., Singh, U., Hatzell, M. C. and Medford, A. J. (2019), ‘Prospects and challenges for solar fertilizers’, Joule, 3:7, pp. 1578605, https://doi.org/10.1016/j.joule.2019.05.001.
    [Google Scholar]
  21. Cossu, M., Murgia, L., Ledda, L., Deligios, P. A., Sirigu, A., Chessa, F. and Pazzona, A. (2014), ‘Solar radiation distribution inside a greenhouse with south-oriented photovoltaic roofs and effects on crop productivity’, Applied Energy, 133, November, pp. 89100, https://doi.org/10.1016/j.apenergy.2014.07.070.
    [Google Scholar]
  22. Cuce, E., Cuce, P. M., Saboor, S., Ghosh, A. and Sheikhnejad, Y. (2022), ‘Floating PVs in terms of power generation, environmental aspects, market potential, and challenges’, Sustainability, 14:5, https://doi.org/10.3390/su14052626.
    [Google Scholar]
  23. Cuppari, R. I., Branscomb, A., Graham, M., Negash, F., Smith, A. K., Proctor, K., Rupp, D., Ayalew, A. T., Tilaye, G. T., Higgins, C. W. and Najm, M. A. (2024), ‘Agrivoltaics: Synergies and trade-offs in achieving the sustainable development goals at the global and local scale’, Applied Energy, 362, May, 122970, https://doi.org/10.1016/j.apenergy.2024.122970.
    [Google Scholar]
  24. David, T. M., Rizol, P. M. S. R., Machado, M. A. G. and Buccieri, G. P. (2020), ‘Future research tendencies for solar energy management using a bibliometric analysis, 2000–2019’, Heliyon, 6:7, https://doi.org/10.1016/j.heliyon.2020.e04452.
    [Google Scholar]
  25. De La Torre, F. J. C., Varo, M., López-Luque, R., Ramírez-Faz, J. and Fernández-Ahumada, L. M. (2022), ‘Design and analysis of a tracking/backtracking strategy for PV plants with horizontal trackers after their conversion to agrivoltaic plants’, Renewable Energy, 187, March, pp. 53750, https://doi.org/10.1016/j.renene.2022.01.081.
    [Google Scholar]
  26. Derviş, H. (2019), ‘Bibliometric analysis using Bibliometrix an R package’, Journal of Scientometric Research, 8:3, pp. 15660, https://doi.org/10.5530/jscires.8.3.32.
    [Google Scholar]
  27. Dong, B., Xu, G., Luo, X., Cai, Y. and Gao, W. (2012), ‘A bibliometric analysis of solar power research from 1991 to 2010’, Scientometrics, 93:3, pp. 110117, https://doi.org/10.1007/s11192-012-0730-9.
    [Google Scholar]
  28. Donthu, N., Kumar, S., Mukherjee, D., Pandey, N. and Lim, W. M. (2021), ‘How to conduct a bibliometric analysis: An overview and guidelines’, Journal of Business Research, 133, September, pp. 28596, https://doi.org/10.1016/j.jbusres.2021.04.070.
    [Google Scholar]
  29. Engelken, M., Römer, B., Drescher, M., Welpe, I. M. and Picot, A. (2016), ‘Comparing drivers, barriers, and opportunities of business models for renewable energies: A review’, Renewable and Sustainable Energy Reviews, 60, July, pp. 795809, https://doi.org/10.1016/j.rser.2015.12.163.
    [Google Scholar]
  30. FAO (2022), ‘Greenhouse gas emissions from agri-food systems: Global, regional and country trends, 2000–2020’, FAOSTAT Analytical Brief No. 50, Rome, 15 November, https://www.fao.org/documents/card/en?details=cc2672en/. Accessed 28 March 2024.
  31. Ghosh, A. (2023), ‘Nexus between agriculture and photovoltaics (agrivoltaics, agriphotovoltaics) for sustainable development goal: A review’, Solar Energy, 266, December, 112146, https://doi.org/10.1016/j.solener.2023.112146.
    [Google Scholar]
  32. Gorjian, S., Singh, R., Shukla, A. and Mazhar, A. R. (2020), ‘Chapter 6: On-farm applications of solar PV systems’, in S. Gorjian and A. Shukla (eds), Photovoltaic Solar Energy Conversion, New York: Academic Press, pp. 14790, https://doi.org/10.1016/B978-0-12-819610-6.00006-5.
    [Google Scholar]
  33. Güney, T. (2022), ‘Solar energy and sustainable development: Evidence from 35 countries’, International Journal of Sustainable Development & World Ecology, 29:2, pp. 18794, https://doi.org/10.1080/13504509.2021.1986749.
    [Google Scholar]
  34. Gutiérrez-Salcedo, M., Martínez, M. Á., Moral-Munoz, J. A., Herrera-Viedma, E. and Cobo, M. J. (2018), ‘Some bibliometric procedures for analyzing and evaluating research fields’, Applied Intelligence, 48:5, pp. 127587, https://doi.org/10.1007/s10489-017-1105-y.
    [Google Scholar]
  35. IEA (2023), ‘Energy system: Fossil fuels’, 11 July, https://www.iea.org/energy-system/fossil-fuels. Accessed 28 March 2024.
  36. Jing, R., Liu, J., Zhang, H., Zhong, F., Liu, Y. and Lin, J. (2022), ‘Unlock the hidden potential of urban rooftop agrivoltaics energy–food–nexus’, Energy, 256, October, 124626, https://doi.org/10.1016/j.energy.2022.124626.
    [Google Scholar]
  37. Kant, K., Shukla, A., Sharma, A., Kumar, A. and Jain, A. (2016), ‘Thermal energy storage based solar drying systems: A review’, Innovative Food Science & Emerging Technologies, 34, April, pp. 8699, https://doi.org/10.1016/j.ifset.2016.01.007.
    [Google Scholar]
  38. Kapoor, K., Pandey, K. K., Jain, A. K. and Nandan, A. (2014), ‘Evolution of solar energy in India: A review’, Renewable and Sustainable Energy Reviews, 40, December, pp. 47587, https://doi.org/10.1016/j.rser.2014.07.118.
    [Google Scholar]
  39. Karakaya, E. and Sriwannawit, P. (2015), ‘Barriers to the adoption of photovoltaic systems: The state of the art’, Renewable and Sustainable Energy Reviews, 49, September, pp. 6066, https://doi.org/10.1016/j.rser.2015.04.058.
    [Google Scholar]
  40. Kumar, S., Luthra, S. and Haleem, A. (2014), ‘Critical success factors of customer involvement in greening the supply chain: An empirical study’, International Journal of Logistics Systems and Management, 19:3, pp. 283310, https://doi.org/10.1504/ijlsm.2014.065498.
    [Google Scholar]
  41. Kumar, V., Hundal, B. S. and Kaur, K. (2019), ‘Factors affecting consumer buying behaviour of solar water pumping system’, Smart and Sustainable Built Environment, 8:4, pp. 35164, https://doi.org/10.1108/sasbe-10-2018-0052.
    [Google Scholar]
  42. La Notte, L., Giordano, L., Calabrò, E., Bedini, R., Colla, G., Puglisi, G. and Reale, A. (2020), ‘Hybrid and organic photovoltaics for greenhouse applications’, Applied Energy, 278, August, 115582, https://doi.org/10.1016/j.apenergy.2020.115582.
    [Google Scholar]
  43. Lee, K., Khanal, S. and Bakshi, B. R. (2021), ‘Techno-ecologically synergistic food–energy–water systems can meet human and ecosystem needs’, Energy & Environmental Science, 14:7, pp. 370016, https://doi.org/10.1039/d1ee00843a.
    [Google Scholar]
  44. Lefroy, E. and Rydberg, T. (2003), ‘Emergy evaluation of three cropping systems in southwestern Australia’, Ecological Modelling, 161:3, pp. 195211, https://doi.org/10.1016/s0304-3800(02)00341-1.
    [Google Scholar]
  45. Low, M. P. and Siegel, D. (2020), ‘A bibliometric analysis of employee-centered corporate social responsibility research in the 2000s’, Social Responsibility Journal, 16:5, pp. 691717.
    [Google Scholar]
  46. Luthra, S., Kumar, S., Garg, D. and Haleem, A. (2015), ‘Barriers to renewable/sustainable energy technologies adoption: Indian perspective’, Renewable and Sustainable Energy Reviews, 41, January, pp. 76276, https://doi.org/10.1016/j.rser.2014.08.077.
    [Google Scholar]
  47. Machado, M. J. C. V. and Fortunato, J. A. G. (2018), ‘Sustainable management methods: Performance assessment in large companies’, International Journal of Business Innovation and Research, 16:4, pp. 47185, https://doi.org/10.1504/IJBIR.2018.093522.
    [Google Scholar]
  48. Maka, A. O. M. and Alabid, J. M. (2022), ‘Solar energy technology and its roles in sustainable development’, Clean Energy, 6:3, pp. 47683, https://doi.org/10.1093/ce/zkac023.
    [Google Scholar]
  49. Marcelis, L. F. M. and Heuvelink, E. (2019), Achieving Sustainable Greenhouse Cultivation, London: Burleigh Dodds Science Publishing Limited.
    [Google Scholar]
  50. Martin, J. F., Diemont, S. A., Powell, E., Stanton, M. and Levy-Tacher, S. (2006), ‘Emergy evaluation of the performance and sustainability of three agricultural systems with different scales and management’, Agriculture, Ecosystems & Environment, 115:1–4, pp. 12840, https://doi.org/10.1016/j.agee.2005.12.016.
    [Google Scholar]
  51. Marzouk, M. A., Fischer, L. K. and Salheen, M. A. (2024), ‘Factors affecting the social acceptance of agricultural and solar energy systems: The case of new cities in Egypt’, Ain Shams Engineering Journal, 15:6, 102741, https://doi.org/10.1016/j.asej.2024.102741.
    [Google Scholar]
  52. Mishra, P. and Behera, B. (2016), ‘Socio-economic and environmental implications of solar electrification: Experience of rural Odisha’, Renewable and Sustainable Energy Reviews, 56, April, pp. 95364, https://doi.org/10.1016/j.rser.2015.11.075.
    [Google Scholar]
  53. Moerkerken, A., Duijndam, S., Blasch, J., van Beukering, P. and van Well, E. (2023), ‘Which farmers adopt solar energy? A regression analysis to explain adoption decisions over time’, Renewable Energy Focus, 45, June, pp. 16978, https://doi.org/10.1016/j.ref.2023.04.001.
    [Google Scholar]
  54. Moustafa, K. (2016), ‘Food and sustainability challenges under climate changes’, Science and Engineering Ethics, 22:6, pp. 183136, https://doi.org/10.1007/s11948-015-9737-y.
    [Google Scholar]
  55. Mukherjee, D., Lim, W. M., Kumar, S. and Donthu, N. (2022), ‘Guidelines for advancing theory and practice through bibliometric research’, Journal of Business Research, 148, September, pp. 10115, https://doi.org/10.1016/j.jbusres.2022.04.042.
    [Google Scholar]
  56. Nair, M. A. and Sreedharan, C. (1986), ‘Agroforestry farming systems in the homesteads of Kerala, southern India’, Agroforestry Systems, 4:4, pp. 33963, https://doi.org/10.1007/bf00048107.
    [Google Scholar]
  57. Obaideen, K., AlMallahi, M. N., Alami, A. H., Ramadan, M., Abdelkareem, M. A., Shehata, N. and Olabi, A. G. (2021), ‘On the contribution of solar energy to sustainable developments goals: Case study on Mohammed bin Rashid Al Maktoum Solar Park’, International Journal of Thermofluids, 12, November, 100123, https://doi.org/10.1016/j.ijft.2021.100123.
    [Google Scholar]
  58. Palit, D. (2013), ‘Solar energy programs for rural electrification: Experiences and lessons from South Asia’, Energy for Sustainable Development, 17:3, pp. 27079, https://doi.org/10.1016/j.esd.2013.01.002.
    [Google Scholar]
  59. Parkinson, S. and Hunt, J. (2020), ‘Economic potential for rainfed agrivoltaics in groundwater-stressed regions’, Environmental Science & Technology Letters, 7:7, pp. 52531, https://doi.org/10.1021/acs.estlett.0c00349.
    [Google Scholar]
  60. Pascaris, A. S., Schelly, C., Burnham, L. and Pearce, J. M. (2021), ‘Integrating solar energy with agriculture: Industry perspectives on the market, community, and socio-political dimensions of agrivoltaics’, Energy Research & Social Science, 75, May, 102023, https://doi.org/10.1016/j.erss.2021.102023.
    [Google Scholar]
  61. Patel, B., Gami, B., Baria, V., Patel, A. and Patel, P. (2019), ‘Co-generation of solar electricity and agriculture produce by photovoltaic and photosynthesis: Dual model by Abellon, India’, Journal of Solar Energy Engineering, 141:3, 031014, https://doi.org/10.1115/1.4041899.
    [Google Scholar]
  62. Paul, J., Lim, W. M., O’Cass, A., Hao, A. W. and Bresciani, S. (2021), ‘Scientific Procedures and Rationales for Systematic Literature Reviews (SPAR-4-SLR)’, International Journal of Consumer Studies, 45:4, pp. O116, https://doi.org/10.1111/ijcs.12695.
    [Google Scholar]
  63. Pirasteh, G., Saidur, R., Rahman, S. M. A. and Rahim, N. A. (2014), ‘A review on development of solar drying applications’, Renewable and Sustainable Energy Reviews, 31, March, pp. 13348, https://doi.org/10.1016/j.rser.2013.11.052.
    [Google Scholar]
  64. Pringle, A. M., Handler, R. M. and Pearce, J. M. (2017), ‘Aquavoltaics: Synergies for dual use of water area for solar photovoltaic electricity generation and aquaculture’, Renewable and Sustainable Energy Reviews, 80, December, pp. 57284, https://doi.org/10.1016/j.rser.2017.05.191.
    [Google Scholar]
  65. Rahman, M. M., Khan, I., Field, D. L., Techato, K. and Alameh, K. (2022), ‘Powering agriculture: Present status, future potential, and challenges of renewable energy applications’, Renewable Energy, 188, April, pp. 73149, https://doi.org/10.1016/j.renene.2022.02.065.
    [Google Scholar]
  66. Reddy, B. S. (2016), ‘India’s energy system transition: Survival of the greenest’, Renewable Energy, 92, July, pp. 293302, https://doi.org/10.1016/j.renene.2016.02.027.
    [Google Scholar]
  67. Roca, L., Sánchez, J. A., Rodríguez, F., Bonilla, J., De la Calle, A. and Berenguel, M. (2016), ‘Predictive control applied to a solar desalination plant connected to a greenhouse with daily variation of irrigation water demand’, Energies, 9:3, https://doi.org/10.3390/en9030194.
    [Google Scholar]
  68. Rubio-Aliaga, Á., Sánchez-Lozano, J. M., Garcia-Cascales, M. S., Benhamou, M. and Molina-Garcia, A. (2016), ‘GIS based solar resource analysis for irrigation purposes: Rural areas comparison under groundwater scarcity conditions’, Solar Energy Materials and Solar Cells, 156, November, pp. 12839, https://doi.org/10.1016/j.solmat.2016.06.045.
    [Google Scholar]
  69. Sahu, G. P., Singh, P. and Dwivedi, P. (2021), ‘Adoption of solar energy in India: A study through interpretive structural modelling’, World Journal of Science, Technology and Sustainable Development, 18:4, pp. 45773, https://doi.org/10.1108/wjstsd-04-2021-0043.
    [Google Scholar]
  70. Shakeel, S. R., Yousaf, H., Irfan, M. and Rajala, A. (2023), ‘Solar PV adoption at household level: Insights based on a systematic literature review’, Energy Strategy Reviews, 50, November, 101178, https://doi.org/10.1016/j.esr.2023.101178.
    [Google Scholar]
  71. Sharif, A., Meo, M. S., Chowdhury, M. A. F. and Sohag, K. (2021), ‘Role of solar energy in reducing ecological footprints: An empirical analysis’, Journal of Cleaner Production, 292, April, 126028, https://doi.org/10.1016/j.jclepro.2021.126028.
    [Google Scholar]
  72. Sharvini, S. R., Noor, Z. Z., Chong, C. S., Stringer, L. C. and Yusuf, R. O. (2018), ‘Energy consumption trends and their linkages with renewable energy policies in East and Southeast Asian countries: Challenges and opportunities’, Sustainable Environment Research, 28:6, pp. 25766, https://doi.org/10.1016/j.serj.2018.08.006.
    [Google Scholar]
  73. Shukla, A. K., Sudhakar, K. and Baredar, P. (2017), ‘Recent advancement in BIPV product technologies: A review’, Energy and Buildings, 140, pp. 18895, https://doi.org/10.1016/j.enbuild.2017.02.015.
    [Google Scholar]
  74. Sindhu, S., Nehra, V. and Luthra, S. (2016), ‘Identification and analysis of barriers in implementation of solar energy in Indian rural sector using integrated ISM and fuzzy MICMAC approach’, Renewable and Sustainable Energy Reviews, 62, September, pp. 7088, https://doi.org/10.1016/j.rser.2016.04.033.
    [Google Scholar]
  75. Taki, M., Rohani, A. and Rahmati-Joneidabad, M. (2018), ‘Solar thermal simulation and applications in greenhouse’, Information Processing in Agriculture, 5:1, pp. 83113, https://doi.org/10.1016/j.inpa.2017.10.003.
    [Google Scholar]
  76. Touil, S., Richa, A., Fizir, M. and Bingwa, B. (2021), ‘Shading effect of photovoltaic panels on horticulture crops production: A mini review’, Reviews in Environmental Science and Bio/Technology, 20:2, pp. 28196, https://doi.org/10.1007/s11157-021-09572-2.
    [Google Scholar]
  77. Tsaur, R.-C. and Lin, Y.-H. (2018), ‘Exploring the consumer attitude of building-attached photovoltaic equipment using revised technology acceptance model’, Sustainability, 10:11, https://doi.org/10.3390/su10114177.
    [Google Scholar]
  78. United Nations (2024), ’Cities: United Nations Sustainable Development Action 2015’, https://www.un.org/sustainabledevelopment/cities/. Accessed 26 March 2024.
  79. van Eck, N. J. and Waltman, L. (2013), {VOSviewer} Manual, Leiden: Univeristeit Leiden, http://www.vosviewer.com/documentation/Manual_VOSviewer_1.6.1.pdf. Accessed 15 March 2024.
    [Google Scholar]
  80. Walston, L. J., Mishra, S. K., Hartmann, H. M., Hlohowskyj, I., McCall, J. and Macknick, J. (2018), ‘Examining the potential for agricultural benefits from pollinator habitat at solar facilities in the United States’, Environmental Science & Technology, 52:13, pp. 756676, https://doi.org/10.1021/acs.est.8b00020.
    [Google Scholar]
  81. Wu, J. and Wu, T. (2015), ‘Ensure access to affordable, reliable, sustainable and modern energy for all’, UN Chronicle, 51:4, pp. 1718, https://doi.org/10.18356/24ef28d2-en.
    [Google Scholar]
  82. Xiao, Y. and Watson, M. (2019), ‘Guidance on conducting a systematic literature review’, Journal of Planning Education and Research, 39:1, pp. 93112, https://doi.org/10.1177/0739456x17723971.
    [Google Scholar]
  83. Xie, J., Yu, J., Chen, B., Feng, Z., Lyu, J., Hu, L., Gan, Y. and Siddique, K. H. (2018), ‘Gobi agriculture: An innovative farming system that increases energy and water use efficiencies: A review’, Agronomy for Sustainable Development, 38:6, pp. 116, https://doi.org/10.1007/s13593-018-0540-4.
    [Google Scholar]
  84. Xinchun, C., Mengyang, W., Xiangping, G., Yalian, Z., Yan, G., Nan, W. and Weiguang, W. (2017), ‘Assessing water scarcity in agricultural production system based on the generalized water resources and water footprint framework’, The Science of the Total Environment, 609, 31 December, pp. 58797, https://doi.org/10.1016/j.scitotenv.2017.07.191.
    [Google Scholar]
  85. Yaqoot, M., Diwan, P. and Kandpal, T. C. (2016), ‘Review of barriers to the dissemination of decentralized renewable energy systems’, Renewable and Sustainable Energy Reviews, 58, May, pp. 47790, https://doi.org/10.1016/j.rser.2015.12.224.
    [Google Scholar]
  86. Zhai, P. and Williams, E. D. (2012), ‘Analyzing consumer acceptance of photovoltaics (PV) using fuzzy logic model’, Renewable Energy, 41, May, pp. 35057, https://doi.org/10.1016/j.renene.2011.11.041.
    [Google Scholar]
  87. Zwane, N., Tazvinga, H., Botai, C., Murambadoro, M., Botai, J., De Wit, J., Mabasa, B., Daniel, S. and Mabhaudhi, T. (2022), ‘A bibliometric analysis of solar energy forecasting studies in Africa’, Energies, 15:15, https://doi.org/10.3390/en15155520.
    [Google Scholar]
  88. Xue, J. (2017), ‘Photovoltaic agriculture: New opportunity for photovoltaic applications in China’, Renewable and Sustainable Energy Reviews, 73, June, pp. 19, https://doi.org/10.1016/j.rser.2017.01.098.
    [Google Scholar]
/content/journals/10.1386/tmsd_00101_1
Loading
/content/journals/10.1386/tmsd_00101_1
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a success
Invalid data
An error occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test